Primate ABO Gene is under Weak Positive Selection
Author(s) -
Eliane Santos EVANOVICH,
Maria Lúcia Harada
Publication year - 2012
Publication title -
notulae scientia biologicae
Language(s) - English
Resource type - Journals
eISSN - 2067-3264
pISSN - 2067-3205
DOI - 10.15835/nsb427487
Subject(s) - biology , abo blood group system , genetics , allele , gene , locus (genetics) , balancing selection , exon , phenotype , evolutionary biology
ABO locus presents three main alleles: A, B and O. A and B encode glycosyltransferases that catalyze the addiction of an N-GalNac and D-galactose to a precursor substance (H substance), producing A and B antigens, while the O allele does not produce a functional protein. The presence of A and B antigens have been associated to resistance against infectious agents which could use them as attachment factors increasing the virulence of some parasitic agents. As these antigens are not restrict to humans, analyses them in others species, for instance non-human primates, may be crucial to understand the relationship between pathogens and ABO phenotypes. Despite of the relevance of this issue, in the last decade few studies have addressed, mainly in New World Monkeys (NWM), natural reservoir of tropical diseases in Amazon Region. In order to understand the evolution of the ABO system in the primates, it has been obtained the partial sequence of the most important exon of ABO gene (exon 7), in platyrrhini families: Atelidae, Pithecidae and Cebidae. Then, it has been compared the sequences obtained those present in the literature, and measured the selective pressure. The present results shown that residues 266 and 268 are also crucial to distinguish A and B phenotypes in the platyrrhines, such as in catarrhines, and the 266 codon is under positive selection, although the most site codons are under action of purifying selection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom