Conditional quantitative trait locus mapping of wheat seed protein-fraction in relation to starch content
Author(s) -
Yang Zhao,
X.Y. Li,
Xingyu Ju,
S.H. Zhang,
Jiang Tian,
Xinlei Yang
Publication year - 2017
Publication title -
cereal research communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.28
H-Index - 32
eISSN - 1788-9170
pISSN - 0133-3720
DOI - 10.1556/0806.45.2017.028
Subject(s) - glutenin , quantitative trait locus , gliadin , starch , biology , locus (genetics) , storage protein , agronomy , food science , gluten , genetics , gene , protein subunit
Protein and starch are important in wheat quality and yield. To understand the genetic relationship between protein and starch at the quantitative trait locus (QTL)/gene level, 168 doubled haploid (DH) lines were used at three locations over 2 years. The QTLs for proteinfraction contents and starch content were analyzed by unconditional and conditional QTL mapping. We detected 17 unconditional additive QTLs (four albumin QTLs, three globulin QTLs, six gliadin QTLs, four glutenin QTLs) controlling protein-fraction contents. We detected 19 conditional QTLs (five albumin QTLs, three globulin QTLs, five gliadin QTLs, six glutenin QTLs) based on starch content. Of these QTLs, QAlu1B, QGlo6A, QGli1B, QGli7A, QGlu1B and QGlu1D increased the protein-fraction contents independent of the starch content. These QTLs could regulate the usual inverse relationship between protein and starch in wheat seeds. The results could possibly be used in the simultaneous improvement of grain protein and starch content in wheat breeding
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom