z-logo
open-access-imgOpen Access
Effect of silicon and mineral extract on heavy metals balance and accumulation rate in the muscle tissue of poultry
Author(s) -
Serhii Razanov,
Halyna Hutsol,
L. I. Posternak,
С. П. Ковалева
Publication year - 2019
Publication title -
ukrainian journal of ecology
Language(s) - English
Resource type - Journals
ISSN - 2520-2138
DOI - 10.15421/2019_821
Subject(s) - cadmium , zinc , fodder , sunflower , straw , chemistry , zoology , agronomy , biology , organic chemistry
The level of contamination of poultry fodder raw material, which includes 30% of corn, 55% of wheat, 5% of oats, 5% of barley and 5% of sunflower meal, by heavy metals (lead, cadmium, zinc, copper) in the zone of intensive farming of the Right-bank Forest-steppe of Ukraine is shown. The impact of silicon and mineral extract on the intensity of heavy metals (lead, cadmium, zinc, copper) accumulation in the edible parts of poultry, namely in the red and white meat, liver and skin is studied. It has been revealed that there is an excess of MAC in cadmium by 2.1 times in the fodder wheat and by 3.0 times in the sunflower meal (Medical and Biological Requirements 5061-89) in the zone of intensive farming of the Right-bank Forest-steppe of Ukraine. The replacement of 10% of water with siliconand mineral water extract in the poultry diet under their keeping at households contributes to increase the removal of lead from their bodies by 27.4 %, cadmium – by 30.2%, zinc – by 20%, and copper – by 16.3%. We determined that the use of silicon and mineral water extract in the poultry diet reduced the concentration of lead by 1.6 times in the liver, by 1.1 times in the white meat and by 1.02 times in the red meat; it reduced the concentration of cadmium by 1.2, 1.6, and 1.2 times; reduced the concentration of zinc by 1.3, 1.05, and 1.8 times; the concentration of copper by 1.3, 1.3, and 1.4 times, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom