
A general biochemical kinetics data fitting algorithm for quasi-steady-state detection
Author(s) -
Justinas V. Daugmaudis,
Audrius Laurynėnas,
Juozas Kulys,
Feliksas Ivanauskas
Publication year - 2016
Publication title -
lietuvos matematikos rinkinys
Language(s) - English
Resource type - Journals
eISSN - 2335-898X
pISSN - 0132-2818
DOI - 10.15388/lmr.a.2016.03
Subject(s) - maxima and minima , kinetics , a priori and a posteriori , algorithm , steady state (chemistry) , computer science , experimental data , test data , biological system , data mining , mathematics , chemistry , statistics , physics , biology , quantum mechanics , mathematical analysis , philosophy , epistemology , programming language
. We develop a general algorithm for fitting the biochemical kinetics data. The developed algorithm searches and analyzes numerous minima. This approach allows us to analyze biochemical data without a priori quasi-steady-state assumptions. The algorithm allows us to treat the biochemical kinetics data that has varying degree of steadiness. We test the approach by analyzing experiment data from 4-nitrophenyl phosphate hydrolysis with alkaline phosphatase.