z-logo
open-access-imgOpen Access
Improved Deep Convolutional Neural Network with Age Augmentation for Facial Emotion Recognition in Social Companion Robotics
Author(s) -
Steven Lawrence,
Taif Anjum,
Amir Shabani
Publication year - 2021
Publication title -
journal of computational vision and imaging systems
Language(s) - English
Resource type - Journals
ISSN - 2562-0444
DOI - 10.15353/jcvis.v6i1.3549
Subject(s) - overfitting , convolutional neural network , artificial intelligence , robotics , classifier (uml) , computer science , emotion recognition , deep learning , facial expression , machine learning , robot , artificial neural network
Facial emotion recognition (FER) is a critical component for affective computing in social companion robotics. Current FER datasets are not sufficiently age-diversified as they are predominantly adults excluding seniors above fifty years of age which is the target group in long-term care facilities. Data collection from this age group is more challenging due to their privacy concerns and also restrictions under pandemic situations such as COVID-19. We address this issue by using age augmentation which could act as a regularizer and reduce the overfitting of the classifier as well. Our comprehensive experiments show that improving a typical Deep Convolutional Neural Network (CNN) architecture with facial age augmentation improves both the accuracy and standard deviation of the classifier when predicting emotions of diverse age groups including seniors. The proposed framework is a promising step towards improving a participant’s experience and interactions with social companion robots with affective computing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom