The Effect of Genetic Conflict on Genomic Imprinting and Modification of Expression at a Sex-Linked Locus
Author(s) -
Hamish G. Spencer,
Marcus W. Feldman,
Andrew G. Clark,
Anton E. Weisstein
Publication year - 2004
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1534/genetics.166.1.565
Subject(s) - imprinting (psychology) , genomic imprinting , biology , locus (genetics) , allele , genetics , offspring , enhancer , evolutionary biology , gene , gene expression , dna methylation , pregnancy
We examine how genomic imprinting may have evolved at an X-linked locus, using six diallelic models of selection in which one allele is imprintable and the other is not. Selection pressures are generated by genetic conflict between mothers and their offspring. The various models describe cases of maternal and paternal inactivation, in which females may be monogamous or bigamous. When inactivation is maternal, we examine the situations in which only female offspring exhibit imprinting as well as when both sexes do. We compare our results to those previously obtained for an autosomal locus and to four models in which a dominant modifier of biallelic expression is subjected to the same selection pressures. We find that, in accord with verbal predictions, maternal inactivation of growth enhancers and paternal inactivation of growth inhibitors are more likely than imprinting in the respective opposite directions, although these latter outcomes are possible for certain parameter combinations. The expected outcomes are easier to evolve than the same outcomes for autosomal loci, contradicting the available evidence concerning the direction of imprinting on mammalian sex chromosomes. In most of our models stable polymorphism of imprinting status is possible, a behavior not predicted by verbal accounts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom