The Effect of Consanguinity on Between-Individual Identity-by-Descent Sharing
Author(s) -
Alissa L. Severson,
Shai Carmi,
Noah A. Rosenberg
Publication year - 2019
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1534/genetics.119.302136
Subject(s) - identity by descent , consanguinity , biology , genetics , locus (genetics) , population , inbreeding , founder effect , coalescent theory , kinship , genome , evolutionary biology , demography , haplotype , allele , phylogenetics , gene , sociology , political science , law
Consanguineous unions increase the rate at which identical genomic segments are paired within individuals to produce runs of homozygosity (ROH). The extent to which such unions affect identity-by-descent (IBD) genomic sharing between rather than within individuals in a population, however, is not immediately evident from within-individual ROH levels. Using the fact that the time to the most recent common ancestor [Formula: see text] for a pair of genomes at a specific locus is inversely related to the extent of IBD sharing between the genomes in the neighborhood of the locus, we study IBD sharing for a pair of genomes sampled either within the same individual or in different individuals. We develop a coalescent model for a set of mating pairs in a diploid population, treating the fraction of consanguineous unions as a parameter. Considering mating models that include unions between sibs, first cousins, and n th cousins, we determine the effect of the consanguinity rate on the mean [Formula: see text] for pairs of lineages sampled either within the same individual or in different individuals. The results indicate that consanguinity not only increases ROH sharing between the two genomes within an individual, it also increases IBD sharing between individuals in the population, the magnitude of the effect increasing with the kinship coefficient of the type of consanguineous union. Considering computations of ROH and between-individual IBD in Jewish populations whose consanguinity rates have been estimated from demographic data, we find that, in accord with the theoretical results, increases in consanguinity and ROH levels inflate levels of IBD sharing between individuals in a population. The results contribute more generally to the interpretation of runs of homozygosity, IBD sharing between individuals, and the relationship between ROH and IBD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom