z-logo
open-access-imgOpen Access
Editing of Mitochondrial Transcripts nad3 and cox2 by Dek10 Is Essential for Mitochondrial Function and Maize Plant Development
Author(s) -
Weiwei Qi,
Zhongrui Tian,
Lei Lü,
Xiuzu Chen,
Xinze Chen,
Wei Zhang,
Rentao Song
Publication year - 2017
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1534/genetics.116.199331
Subject(s) - biology , mitochondrial dna , function (biology) , genetics , mitochondrion , computational biology , evolutionary biology , gene
Respiration, the core of mitochondrial metabolism, depends on the function of five respiratory complexes. Many respiratory chain-related proteins are encoded by the mitochondrial genome and their RNAs undergo post-transcriptional modifications by nuclear genome-expressed factors, including pentatricopeptide repeat (PPR) proteins. Maize defective kernel 10 ( dek10 ) is a classic mutant with small kernels and delayed development. Through positional cloning, we found that Dek10 encodes an E-subgroup PPR protein localized in mitochondria. Sequencing analysis indicated that Dek10 is responsible for the C-to-U editing at nad3 -61, nad3 -62, and cox2 -550 sites, which are specific editing sites in monocots. The defects of these editing sites result in significant reduction of Nad3 and the loss of Cox2. Interestingly, the assembly of complex I was not reduced, but its NADH dehydrogenase activity was greatly decreased. The assembly of complex IV was significantly reduced. Transcriptome and transmission electron microscopy (TEM) analysis revealed that proper editing of nad3 and cox2 is critical for mitochondrial functions, biogenesis, and morphology. These results indicate that the E-subgroup PPR protein Dek10 is responsible for multiple editing sites in nad3 and cox2 , which are essential for mitochondrial functions and plant development in maize.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom