Flowering Time Quantitative Trait Loci Analysis of Oilseed Brassica in Multiple Environments and Genomewide Alignment with Arabidopsis
Author(s) -
Yan Long,
Jiaqin Shi,
Dan Qiu,
R Li,
C Zhang,
Jialu Wang,
Jilun Hou,
Jianwei Zhao,
Lei Shi,
BeomSeok Park,
Su Ryun Choi,
Yong Pyo Lim,
J. Meng
Publication year - 2007
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1534/genetics.107.080705
Subject(s) - quantitative trait locus , biology , family based qtl mapping , genetics , arabidopsis , population , brassica , genetic linkage , locus (genetics) , inclusive composite interval mapping , gene , gene mapping , chromosome , mutant , botany , demography , sociology
Most agronomical traits exhibit quantitative variation, which is controlled by multiple genes and are environmentally dependent. To study the genetic variation of flowering time in Brassica napus, a DH population and its derived reconstructed F(2) population were planted in 11 field environments. The flowering time varied greatly with environments; 60% of the phenotypic variation was attributed to genetic effects. Five to 18 QTL at a statistically significant level (SL-QTL) were detected in each environment and, on average, two new SL-QTL were discovered with each added environment. Another type of QTL, micro-real QTL (MR-QTL), was detected repeatedly from at least 2 of the 11 environments; resulting in a total of 36 SL-QTL and 6 MR-QTL. Sixty-three interacting pairs of loci were found; 50% of them were involved in QTL. Hundreds of floral transition genes in Arabidopsis were aligned with the linkage map of B. napus by in silico mapping; 28% of them aligned with QTL regions and 9% were consistent with interacting loci. One locus, BnFLC10, in N10 and a QTL cluster in N16 were specific to spring- and winter-cropped environments respectively. The number of QTL, interacting loci, and aligned functional genes revealed a complex genetic network controlling flowering time in B. napus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom