On the multiplicative order of elements in Wiedemann's towers of finite fields
Author(s) -
Roman Popovych
Publication year - 2015
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.7.2.220-225
Subject(s) - mathematics , multiplicative function , finite field , order (exchange) , fermat's last theorem , field (mathematics) , object (grammar) , fermat number , multiplicative group , discrete mathematics , pure mathematics , combinatorics , mathematical analysis , computer science , finance , artificial intelligence , economics
We consider recursive binary finite field extensions $E_{i+1} =E_{i} (x_{i+1} )$, $i\ge -1$, defined by D. Wiedemann. The main object of the paper is to give some proper divisors of the Fermat numbers $N_{i} $ that are not equal to the multiplicative order $O(x_{i} )$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom