Development of a Micro Swimming Robot Using Optimised Giant Magnetostrictive Thin Films
Author(s) -
Y. Zhang,
Guangjun Liu,
H. Li
Publication year - 2006
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1533/abbi.2006.0025
Subject(s) - fin , propulsion , cantilever , robot , actuator , oscillation (cell signaling) , engineering , materials science , acoustics , simulation , computer science , structural engineering , mechanical engineering , aerospace engineering , physics , electrical engineering , chemistry , artificial intelligence , biochemistry
A fish-like swimming micro robot is developed using an optimised fin actuator made of giant magnetostrictive films (GMFs). The force oscillation dynamic model of a GMF cantilever with variable cross-section area is derived, and the propulsive model of the fish robot in liquid is established. A discrete variate method for optimising caudal fin configuration is proposed to optimise its propulsive force and drive efficiency under the constraints of fixed surface area and sufficient fin end strength. Both theoretical analysis and experimental results have confirmed that the optimised caudal fin configuration can generate more powerful propulsion and improved efficiency
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom