z-logo
open-access-imgOpen Access
Telecoupling framework for research on migratory species in the Anthropocene
Author(s) -
Jacqueline Hulina,
Carol I. Bocetti,
Henry Campa,
Vanessa Hull,
Wu Yang,
Jianguo Liu
Publication year - 2017
Publication title -
elementa science of the anthropocene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.011
H-Index - 34
ISSN - 2325-1026
DOI - 10.1525/elementa.184
Subject(s) - threatened species , geography , context (archaeology) , warbler , endangered species , ecology , songbird , environmental resource management , biodiversity , anthropocene , environmental planning , biology , habitat , environmental science , archaeology
Migratory species are an important component of biodiversity and provide essential ecosystem services for humans, but many are threatened and endangered. Numerous studies have been conducted on the biology of migratory species, and there is an increased recognition of the major role of human dimensions in conserving migratory species. However, there is a lack of systematic integration of socioeconomic and environmental factors. Because human activities affect migratory species in multiple places, integrating socioeconomic and environmental factors across space is essential, but challenging. The holistic framework of telecoupling (socioeconomic and environmental interactions over distances) has the potential to help meet this challenge because it enables researchers to integrate human and natural interactions across multiple distant places. The use of the telecoupling framework may also lead to new conservation strategies and actions. To demonstrate its potential, we apply the framework to Kirtland’s warblers ('Setophaga kirtlandii' ), a conservation-reliant migratory songbird. Results show accomplishments from long-term research and recovery efforts on the warbler in the context of the telecoupling framework. The results also show 24 research gaps even though the species has been relatively well-studied compared to many other species. An important gap is a lack of systematic studies on feedbacks among breeding, wintering, and stopover sites, as well as other “spillover” systems that may affect and be affected by migration (e.g., via tourism, land use, or climate change). The framework integrated scattered information and provided useful insights about new research topics and flow-centered management approaches that encapsulate the full annual cycle of migration. We also illustrate the similarities and differences between Kirtland’s warblers and several other migratory species, indicating the applicability of the telecoupling framework to understanding and managing common complexities associated with migratory species in a globalizing world

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom