z-logo
open-access-imgOpen Access
Effect of Expertise on Postmaximal Long Sprint Blood Metabolite Responses
Author(s) -
Christine Ha,
Mathieu Rabate,
Claire Thomas
Publication year - 2011
Publication title -
journal of strength and conditioning research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.569
H-Index - 128
eISSN - 1533-4287
pISSN - 1064-8011
DOI - 10.1519/jsc.0b013e3182001807
Subject(s) - sprint , blood lactate , acidosis , medicine , acid–base homeostasis , metabolic acidosis , elite athletes , hemoglobin , creatine , bicarbonate , athletes , zoology , chemistry , physical therapy , heart rate , blood pressure , biology
The aim of this study was to describe and compare the blood metabolic responses obtained after a single maximal exercise in elite and less-successful athletes and to investigate whether these responses are related to sprint performance. Eleven elite (ELI) and 14 regional (REG) long sprint runners performed a 300-m running test as fast as possible. Blood samples were taken at rest and at 4 minutes after exercise for measurements of blood lactate concentration [La] and acid-base status. The blood metabolic responses of ELI subjects compared to those of REG subjects for pH (7.07 ± 0.05 vs. 7.14 ± 1.5), sodium bicarbonate concentration ([HCO(3)(-)], 8.1 ± 1.5 vs. 9.8 ± 1.8 mmol·L(-1)), hemoglobin O(2) saturation (SaO(2)) (94.7 ± 1.8 vs. 96.2 ± 1.6%) were significantly lower (p < 0.05), and [La] was significantly higher in ELI (21.1 ± 2.9 vs. 19.1 ± 1.2 mmol·L(-1), p < 0.05). The 300-m performance (in % world record) was negatively correlated with pH (r = -0.55, p < 0.01), SaO2 (r = -0.64, p < 0.001), [HCO(3)(-)] (r = -0.40, p < 0.05), and positively correlated with [La] (r = 0.44, p < 0.05). In conclusion, for the same quantity of work, the best athletes are able to strongly alter their blood acid-base balance compared to underperforming runners, with larger acidosis and lactate accumulation. To obtain the pH limits with acute maximal exercise, coaches must have their athletes perform a distance run with duration of exercise superior to 35 seconds. The blood lactate accumulation values (mmol·L(-1)·s(-1)) recorded in this study indicate that the maximal glycolysis rate obtained in the literature from short sprint distances is maintained, but not increased, until 35 seconds of exercise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here