Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media
Author(s) -
Caroline Rauch
Publication year - 2011
Publication title -
altex
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.975
H-Index - 51
eISSN - 1868-8551
pISSN - 1868-596X
DOI - 10.14573/altex.2011.4.305
Subject(s) - fetal bovine serum , platelet lysate , platelet , cell culture , andrology , cell growth , lysis , cell , stem cell , immunology , chemistry , biology , microbiology and biotechnology , biochemistry , medicine , genetics
The search for alternatives to the use of fetal bovine serum (FBS) in cell and tissue culture media has become a major goal in terms of the 3R principles in order to reduce or to avoid harvesting of FBS from bovine fetuses, and, in terms of Good Manufacturing Practice (GMP), to ensure safe and animal product-free conditions for biomedical tissue engineering and (adult) stem cell therapy, respectively. In the present study, we investigated the feasibility of using platelet lysates (PL) as a substitute for FBS, based on the fact that most of the potent mitogenic factors present in serum are derived from activated thrombocytes. Platelet lysates were obtained from outdated human donor platelet concentrates. Methods were established to activate human donor platelets in order to achieve a maximum yield of platelet a-granule growth factors. Platelet lysates were successfully introduced to grow and maintain anchorage-dependent and -independent human and animal cell lines. For cell culture experiments, cells were either grown in culture media supplemented with 10% FBS, 5% PL, or under serum-free conditions. Growth experiments, viability assays, and platelet lysate-induced activation of ERK1/2 mitogen-activated protein kinase revealed platelet lysates as a valuable alternative to FBS in cell culture media.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom