New Binding Mode of SLURP Protein to a7 Nicotinic Acetylcholine Receptor Revealed by Computer Simulations
Author(s) -
Igor D. Diankin,
Denis S. Kudryavtsev,
Arthur O. Zalevsky,
Victor I. Tsetlin,
Andrey V. Golovin
Publication year - 2018
Publication title -
supercomputing frontiers and innovations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.375
H-Index - 16
eISSN - 2409-6008
pISSN - 2313-8734
DOI - 10.14529/jsfi180407
Subject(s) - acetylcholine receptor , docking (animal) , allosteric regulation , nicotinic agonist , chemistry , nicotinic acetylcholine receptor , molecular dynamics , biophysics , receptor , stereochemistry , biochemistry , computational chemistry , biology , medicine , nursing
SLURP-1 is a member of three-finger toxin-like proteins. Their characteristic feature is a set of three beta strands extruding from hydrophobic core stabilized by disulfide bonds. Each beta-strand carries a flexible loop, which is responsible for recognition. SLURP-1 was recently shown to act as an endogenous growth regulator of keratinocytes and tumor suppressor by reducing cell migration and invasion by antagonizing the pro-malignant effects of nicotine. This effect is achieved through allosteric interaction with alpha7 nicotinic acetylcholine receptors (alpha-7 nAChRs) in an antagonist-like manner. Moreover, this interaction is unaffected by several well-known agents specifically alpha-bungarotoxin. In this work, we carry out the conformational analysis of the SLURP-1 by a microsecond-long full-atom explicit solvent molecular dynamics simulations followed by clustering, to identify representative states. To achieve this timescale we employed a GPU-accelerated version of GROMACS modeling package. To avoid human bias in clustering we used a non-parametric clustering algorithm Affinity Propagation adapted for biomolecules and HPC environments. Then, we applied protein-protein molecular docking of the ten most massive clusters to alpha7-nAChRs in order to test if structural variability can affect binding. Docking simulations revealed the unusual binding mode of one of the minor SLURP-1 conformations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom