z-logo
open-access-imgOpen Access
Applications of High Performance Computing: Born–Oppenheimer Molecular Dynamics of Complex Formation in Aqueous Solutions
Author(s) -
Maria G. Khrenova,
Dmitry P. Kapusta,
Ilya V. Babchuk,
Yulia I. Meteleshko
Publication year - 2018
Publication title -
supercomputing frontiers and innovations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.375
H-Index - 16
eISSN - 2409-6008
pISSN - 2313-8734
DOI - 10.14529/jsfi180312
Subject(s) - supercomputer , benchmark (surveying) , molecular dynamics , density functional theory , aqueous solution , computational chemistry , caesium , chemistry , born–oppenheimer approximation , statistical physics , ion , gaussian , chemical physics , physics , molecule , computer science , inorganic chemistry , parallel computing , organic chemistry , geodesy , geography
The progress of supercomputer technologies initiated the development of methods of computational chemistry and their applications, particularly molecular dynamic simulations with ab initio potentials. These new methods allow to solve important problems of chemistry and technology. Particularly, solvent extraction and separation techniques are widely used to decrease the amount of radioactive wastes, especially radioactive caesium isotopes present in liquid phases. We demonstrated that the calculated binding constants between the alkali cation and calix[4]arene differ 10 times for Cs and Na ions, that is in good agreement with the experimental value. We report the results of benchmark calculations of our model system composed of 929 atoms described in the density functional theory approximation with the GGA-type functional PBE with the empirical dispersion correction D3 and combined basis of Gaussian functions and plane waves DZVP with Goedecker-Teter-Hutter pseudopotentials. We demonstrate that efficiency of calculations decrease to about half if the amount of nodes is 16 on the Lomonosov-2 supercomputer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom