z-logo
open-access-imgOpen Access
Three-dimensional Inversion of Electromagnetic Geophysical Data with Parallel Computational Code on Supercomputer Complex “Lomonosov”
Author(s) -
Sergey V. Zaytsev,
В. А. Куликов,
A. G. Yakovlev,
D. V. Yakovlev
Publication year - 2018
Publication title -
supercomputing frontiers and innovations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.375
H-Index - 16
eISSN - 2409-6008
pISSN - 2313-8734
DOI - 10.14529/jsfi180302
Subject(s) - supercomputer , inversion (geology) , magnetotellurics , computer science , geophysics , computational science , geology , parallel computing , seismology , engineering , electrical engineering , electrical resistivity and conductivity , tectonics
Usage of 2D inversion of magnetotelluric data for real geological objects can cause distortion, but it is more often used in commercial projects, because of its effectiveness and great experience. Whereas in the case of 3D inversion is not such a great experience and there are a number of global problems. When switching to 3D inversion of MT data, the requirement for computer technology is significantly increased. In this paper we will discuss a few examples of 3D inversion of electromagnetic geophysical field data with the usage of “Lomonosov” supercomputer and show its effectiveness on several geological objects. Each object is associated with a variety of problems: from search for shallow ore to regional hydrocarbon exploration. But all these objects contain a large volume of measurements obtaining qualitative results for which requires a huge amount of time. So that the use of 3D inversion with a high-performance computational complex makes it possible to obtain a qualitative result of solving a wide range of problems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom