z-logo
open-access-imgOpen Access
A Hybrid of Artificial Bee Colony, Genetic Algorithm, and Neural Network for Diabetic Mellitus Diagnosing
Author(s) -
Tarik A. Rashid,
Saman Mirza Abdullah
Publication year - 2018
Publication title -
aro-the scientific journal of koya university
Language(s) - English
Resource type - Journals
eISSN - 2410-9355
pISSN - 2307-549X
DOI - 10.14500/aro.10368
Subject(s) - artificial bee colony algorithm , artificial neural network , genetic algorithm , computer science , artificial intelligence , set (abstract data type) , mutation , backpropagation , pattern recognition (psychology) , machine learning , algorithm , biology , biochemistry , gene , programming language
Researchers, widely have introduced the Artificial Bee Colony (ABC) as an optimization algorithm to deal with classification, and prediction problems. ABC has been combined with different Artificial Intelligent (AI) techniques to obtain optimum performance indicators. This work introduces a hybrid of ABC, Genetic Algorithm (GA), and Back Propagation Neural Network (BPNN) in the application of classifying, and diagnosing Diabetic Mellitus (DM). The optimized algorithm is combined with a mutation technique of Genetic Algorithm (GA) to obtain the optimum set of training weights for a BPNN. The idea is to prove that weights’ initial index in their initialized set has an impact on the performance rate. Experiments are conducted in three different cases; standard BPNN alone, BPNN trained with ABC, and BPNN trained with the mutation based ABC. The work tests all three cases of optimization on two different datasets (Primary dataset, and Secondary dataset) of diabetic mellitus (DM). The primary dataset is built by this work through collecting 31 features of 501 DM patients in local hospitals. The secondary dataset is the Pima dataset. Results show that the BPNN trained with the mutation based ABC can produce better local solutions than the standard BPNN and BPNN trained in combination with ABC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom