z-logo
open-access-imgOpen Access
Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis
Author(s) -
Sang Kyu Choi,
Yeon Seok Choi,
Seock Joon Kim,
Soyoung Han
Publication year - 2016
Publication title -
applied chemistry for engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.144
H-Index - 11
eISSN - 2288-4505
pISSN - 1225-0112
DOI - 10.14478/ace.2016.1104
Subject(s) - levoglucosan , hemicellulose , pyrolysis , biomass (ecology) , evaporation , pulp and paper industry , biofuel , cellulose , mixing (physics) , gasoline , lignin , chemistry , pyrolysis oil , materials science , waste management , organic chemistry , agronomy , meteorology , aerosol , physics , quantum mechanics , biomass burning , biology , engineering
Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom