Climate Change Scenarios for Hudson Bay, Canada, from General Circulation Models
Author(s) -
William A. Gough,
Edmund Wolfe
Publication year - 2001
Publication title -
arctic
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 59
eISSN - 1923-1245
pISSN - 0004-0843
DOI - 10.14430/arctic773
Subject(s) - bay , sea ice , climatology , climate change , environmental science , climate model , permafrost , precipitation , oceanography , geology , geography , meteorology
Two generations of a climate model are compared using the impact of a CO2 doubling on the Hudson Bay region as the means of diagnosing differences in model performance. Surface temperature, precipitation, sea-ice coverage, and permafrost distribution are compared. The most striking difference is the response of the sea ice in the two models. In the coupled atmosphere-ocean climate model, sea ice virtually disappears in Hudson Bay. This leads to a substantially higher regional temperature response. We suggest that conductivity of sea ice and thermal diffusivity of seawater are key factors that cause the difference in sea-ice response. It is recommended that a regional model be developed to produce more representative climate change scenarios for the Hudson Bay region.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom