z-logo
open-access-imgOpen Access
Role of Silica Fume in Compressive Strength of Cement Paste, Mortar, and Concrete
Author(s) -
Xiaofeng Cong,
Gong Shang-long,
David Darwin,
Steven McCabe
Publication year - 1992
Publication title -
aci materials journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.746
H-Index - 91
eISSN - 1944-737X
pISSN - 0889-325X
DOI - 10.14359/2570
Subject(s) - silica fume , compressive strength , mortar , cement , composite material , materials science
Controversy exists as to why silica fume increases the strength of concrete when it is used as a partial replacement for cement. Some evidence supports the view that the increase in strength is due to an increase in the strength of the cement paste constituent of concrete. However, contradictory evidence exists that shows no increase in the strength of cement paste, but substantial increases in concrete strength, when silica fume is used. The latter evidence is used to support the theory that silica fume strengthens concrete by strengthening the bond between cement paste and aggregate. This study is designed to explain the contradictory evidence and establish the role played by silica fume in controlling the strength of concrete and its constituent materials. These goals are accomplished using cement pastes, mortars, and concretes with water-cementitious material ratios ranging from 0.30 to 0.39. Mixtures incorporate no admixtures, a superplasticizer only, or silica fume and a superplasticizer. The research demonstrates that replacement of cement by silica fume and the addition of a superplasticizer increases the strength of cement paste. It also demonstrates that cement paste specimens, with or without silica fume, can exhibit reduced strength compared to other specimens with the same water-cementitious material ratio if the material segregates during fabrication, thus explaining some earlier experimental observations. The segregation of cement paste is caused by high superplasticizer dosages that do not cause segregation of concrete with the same water-cementitious material ratio. Concrete containing silica fume as a partial replacement for cement exhibits an increased compressive strength because of the improved strength of its cement paste constituent. Changes in the paste-aggregate interface caused by silica fume appear to have little effect on the uniaxial compressive strength of concrete.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom