z-logo
open-access-imgOpen Access
Building Detection in Complex Scenes Thorough Effective Separation of Buildings from Trees
Author(s) -
Mohammad Awrangjeb,
Chunsun Zhang,
Clive S. Fraser
Publication year - 2012
Publication title -
photogrammetric engineering and remote sensing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 127
eISSN - 2374-8079
pISSN - 0099-1112
DOI - 10.14358/pers.78.7.729
Subject(s) - geography , cartography , separation (statistics) , remote sensing , computer science , machine learning
Effective separation of buildings from trees is a major challenge in image-based automatic building detection. This paper presents a three-step method for effective separation of buildings from trees using aerial imagery and lidar data. First, it uses cues such as height to remove objects of low height such as bushes, and width to exclude trees with small horizontal coverage. The height threshold is also used to generate a ground mask where buildings are found to be more separable than in so-called normalized DSM. Second, image entropy and color information are jointly applied to remove easily distinguishable trees. Finally, an innovative rule-based procedure is employed using the edge orientation histogram from the imagery to eliminate false positive candidates. The improved building detection algorithm has been tested on different test areas and it is shown that the algorithm offers high building detection rate in complex scenes which are hilly and densely vegetated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom