Exceptional Points for Nonlinear Schroedinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases
Author(s) -
G. Wunner,
Holger Cartarius,
P. Koeberle,
Jörg Main,
Stefan Rau
Publication year - 2011
Publication title -
acta polytechnica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.207
H-Index - 15
eISSN - 1805-2363
pISSN - 1210-2709
DOI - 10.14311/1418
Subject(s) - eigenvalues and eigenvectors , physics , singularity , hermitian matrix , bose–einstein condensate , eigenfunction , nonlinear system , nonlinear schrödinger equation , negative energy , quantum mechanics , schrödinger equation , quantum , coalescence (physics) , classical mechanics , schrödinger's cat , gross–pitaevskii equation , mathematical physics , mathematics , mathematical analysis , astrobiology
The coalescence of two eigenfunctions with the same energy eigenvalue is not possible in Hermitian Hamiltonians. It is, however, a phenomenon well known from non-hermitian quantum mechanics. It can appear, e.g., for resonances in open systems, with complex energy eigenvalues. If two eigenvalues of a quantum mechanical system which depends on two or more parameters pass through such a branch point singularity at a critical set of parameters, the point in the parameter space is called an exceptional point. We will demonstrate that exceptional points occur not only for non-hermitean
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom