MAP-Kinase Regulated Cytosolic Phospholipase A2 Activity Is Essential for Production of Infectious Hepatitis C Virus Particles
Author(s) -
Nicolas Menzel,
Wolfgang Fischl,
Kathrin Hueging,
Dorothea Bankwitz,
Anne Frentzen,
Sibylle Haid,
Juliane Gentzsch,
Lars Kaderali,
Ralf Bartenschlager,
Thomas Pietschmann
Publication year - 2012
Publication title -
plos pathogens
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.719
H-Index - 206
eISSN - 1553-7374
pISSN - 1553-7366
DOI - 10.1371/journal.ppat.1002829
Subject(s) - infectivity , biology , phospholipase a2 , lipid droplet , hepatitis c virus , cytosol , virology , virus , microbiology and biotechnology , biochemistry , enzyme
Hepatitis C virus (HCV) has infected around 160 million individuals. Current therapies have limited efficacy and are fraught with side effects. To identify cellular HCV dependency factors, possible therapeutic targets, we manipulated signaling cascades with pathway-specific inhibitors. Using this approach we identified the MAPK/ERK regulated, cytosolic, calcium-dependent, group IVA phospholipase A2 (PLA2G4A) as a novel HCV dependency factor. Inhibition of PLA2G4A activity reduced core protein abundance at lipid droplets, core envelopment and secretion of particles. Moreover, released particles displayed aberrant protein composition and were 100-fold less infectious. Exogenous addition of arachidonic acid, the cleavage product of PLA2G4A-catalyzed lipolysis, but not other related poly-unsaturated fatty acids restored infectivity. Strikingly, production of infectious Dengue virus, a relative of HCV, was also dependent on PLA2G4A. These results highlight previously unrecognized parallels in the assembly pathways of these human pathogens, and define PLA2G4A-dependent lipolysis as crucial prerequisite for production of highly infectious viral progeny.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom