z-logo
open-access-imgOpen Access
A Western-Fed Diet Increases Plasma HDL and LDL-Cholesterol Levels in ApoD–/– Mice
Author(s) -
Kamilah Ali,
Ehab M. AboAli,
Md Kabir,
Bethany Riggins,
Susanguy,
Lisa Li,
Ujala Srivastava,
Su Mya Mya Thinn
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0115744
Subject(s) - cholesterol , western diet , medicine , endocrinology , ldl cholesterol , biology , chemistry , obesity
Objective Plasma apolipoprotein (apo)D, a ubiquitously expressed protein that binds small hydrophobic ligands, is found mainly on HDL particles. According to studies of human genetics and lipid disorders, plasma apoD levels positively correlate with HDL-cholesterol and apoAI levels. Thus, we tested the hypothesis that apoD was a regulator of HDL metabolism. Methods & Results We compared the plasma lipid and lipoprotein profiles of wild-type (WT) C57BL/6 mice with apoD−/− mice on a C57BL/6 background after receiving a high fat-high cholesterol diet for 12 weeks. ApoD−/− mice had higher HDL-cholesterol levels (61±13-apoD−/− vs. 52±10-WT-males; 37±11-apoD−/− vs. 22±2 WT-female) than WT mice with sex-specific changes in total plasma levels of cholesterol and other lipids. Compared to WT, the HDL of apoD−/− mice showed an increase in large, lipid-rich HDL particles and according to size various quantities and sizes of LDL particles. Plasma levels of lecithin:cholesterol acyltransferase in the control and apoD−/− mice were not different, however, plasma phospholipid transfer protein activity was modestly elevated (+10%) only in male apoD−/− mice. An in vivo HDL metabolism experiment with isolated Western-fed apoD−/− HDL particles showed that female apoD−/− mice had a 36% decrease in the fractional catabolic rate of HDL cholesteryl ester. Hepatic SR-BI and LDLR protein levels were significantly decreased; accordingly, LDL-cholesterol and apoB levels were increased in female mice. Conclusion In the context of a high fat-high cholesterol diet, apoD deficiency in female mice is associated with increases in both plasma HDL and LDL-cholesterol levels, reflecting changes in expression of SR-BI and LDL receptors, which may impact diet-induced atherosclerosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom