z-logo
open-access-imgOpen Access
MicroRNA-92a Inhibition Attenuates Hypoxia/Reoxygenation-Induced Myocardiocyte Apoptosis by Targeting Smad7
Author(s) -
Busheng Zhang,
Mi Zhou,
Canbo Li,
Jingxin Zhou,
Haiqing Li,
Dan Zhu,
Zhe Wang,
Anqing Chen,
Qiang Zhao
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0100298
Subject(s) - transfection , apoptosis , gene knockdown , microrna , hypoxia (environmental) , luciferase , lactate dehydrogenase , cardioprotection , smad , ischemia , reperfusion injury , microbiology and biotechnology , small interfering rna , cell culture , medicine , pharmacology , biology , cancer research , chemistry , signal transduction , biochemistry , enzyme , gene , genetics , organic chemistry , oxygen
Background MicroRNAs (miRNAs) regulate a lot of physiological and pathological processes, including myocardial ischemia/reperfusion. Recent studies reported that knockdown of miR-92a could attenuate ischemia/reperfusion-induced myocardial injury. In the present study, we examined the potential anti-apoptotic effects of miR-92a in a rat myocardiocyte cell line, and the possible role of Smad7 in such actions. Methodology and Results In a preliminary bioinformatic analysis, we identified SMAD family member 7 ( Smad7 ) as a potential target for miR-92a. A luciferase reporter assay indeed demonstrated that miR-92a could inhibit Smad7 expression. Myocardial ischemia/reperfusion was simulated in rat H9c2 cells with 24-h hypoxia followed by 12-h reoxygenation. Prior to hypoxia/reoxygenation, cells were transfected by miR-92a inhibitor. In some experiments, cells were co-transfected with siRNA-Smad7. The miR-92a inhibitor dramatically reduced the release of lactate dehydrogenase and malonaldehyde, and attenuated cardiomyocyte apoptosis. The miR-92a inhibitor increased SMAD7 protein level and decreased nuclear NF-κB p65 protein. Effects of the miR-92a inhibitor were attenuated by co-transfection with siRNA-Smad7. Conclusion Inhibiting miR-92a can attenuate myocardiocyte apoptosis induced by hypoxia/reoxygenation by targeting Smad7 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom