ObStruct: A Method to Objectively Analyse Factors Driving Population Structure Using Bayesian Ancestry Profiles
Author(s) -
Velimir Gayevskiy,
Steffen Klaere,
Sarah Knight,
Matthew R. Goddard
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0085196
Subject(s) - inference , population , bayesian probability , metric (unit) , divergence (linguistics) , data mining , artificial intelligence , computer science , biology , statistics , evolutionary biology , mathematics , medicine , operations management , environmental health , economics , linguistics , philosophy
Bayesian inference methods are extensively used to detect the presence of population structure given genetic data. The primary output of software implementing these methods are ancestry profiles of sampled individuals. While these profiles robustly partition the data into subgroups, currently there is no objective method to determine whether the fixed factor of interest (e.g. geographic origin) correlates with inferred subgroups or not, and if so, which populations are driving this correlation. We present O b S truct , a novel tool to objectively analyse the nature of structure revealed in Bayesian ancestry profiles using established statistical methods. O b S truct evaluates the extent of structural similarity between sampled and inferred populations, tests the significance of population differentiation, provides information on the contribution of sampled and inferred populations to the observed structure and crucially determines whether the predetermined factor of interest correlates with inferred population structure. Analyses of simulated and experimental data highlight O b S truct 's ability to objectively assess the nature of structure in populations. We show the method is capable of capturing an increase in the level of structure with increasing time since divergence between simulated populations. Further, we applied the method to a highly structured dataset of 1,484 humans from seven continents and a less structured dataset of 179 Saccharomyces cerevisiae from three regions in New Zealand. Our results show that O b S truct provides an objective metric to classify the degree, drivers and significance of inferred structure, as well as providing novel insights into the relationships between sampled populations, and adds a final step to the pipeline for population structure analyses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom