Dietary Glycemic Index, Glycemic Load, and Risk of Coronary Heart Disease, Stroke, and Stroke Mortality: A Systematic Review with Meta-Analysis
Author(s) -
Jingyao Fan,
Yiqing Song,
Yuyao Wang,
Rutai Hui,
Weili Zhang
Publication year - 2012
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0052182
Subject(s) - glycemic load , medicine , glycemic , glycemic index , stroke (engine) , body mass index , overweight , meta analysis , relative risk , prospective cohort study , confidence interval , cardiology , insulin , mechanical engineering , engineering
Background The relationship between dietary glycemic index, glycemic load and risk of coronary heart disease (CHD), stroke, and stroke-related mortality is inconsistent. Methods We systematically searched the MEDLINE, EMBASE, and Science Citation Index Expanded databases using glycemic index, glycemic load, and cardiovascular disease and reference lists of retrieved articles up to April 30, 2012. We included prospective studies with glycemic index and glycemic load as the exposure and incidence of fatal and nonfatal CHD, stroke, and stroke-related mortality as the outcome variable. Pooled relative risks (RR) and 95% confidence intervals (CI) were calculated using random-effects models. Results Fifteen prospective studies with a total of 438,073 participants and 9,424 CHD cases, 2,123 stroke cases, and 342 deaths from stroke were included in the meta-analysis. Gender significantly modified the effects of glycemic index and glycemic load on CHD risk, and high glycemic load level was associated with higher risk of CHD in women (RR = 1.49, 95%CI 1.27−1.73), but not in men (RR = 1.08, 95%CI 0.91−1.27). Stratified meta-analysis by body mass index indicated that among overweight and obese subjects, dietary glycemic load level were associated with increased risk of CHD (RR = 1.49, 95%CI 1.27−1.76; P for interaction = 0.003). Higher dietary glycemic load, but not glycemic index, was positively associated with stroke (RR = 1.19, 95% CI 1.00−1.43). There is a linear dose-response relationship between dietary glycemic load and increased risk of CHD, with pooled RR of 1.05 (95%CI 1.02−1.08) per 50-unit increment in glycemic load level. Conclusion High dietary glycemic load is associated with a higher risk of CHD and stroke, and there is a linear dose-response relationship between glycemic load and CHD risk. Dietary glycemic index is slightly associated with risk of CHD, but not with stroke and stroke-related death. Further studies are needed to verify the effects of gender and body weight on cardiovascular diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom