z-logo
open-access-imgOpen Access
Multiple-target tracking in human and machine vision
Author(s) -
Shiva Kamkar,
Fatemeh Ghezloo,
Hamid Abrishami Moghaddam,
Ali Borji,
Reza Lashgari
Publication year - 2020
Publication title -
plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1007698
Subject(s) - automatic summarization , computer science , artificial intelligence , computer vision , tracking (education) , track (disk drive) , artificial neural network , machine learning , pattern recognition (psychology) , human–computer interaction , psychology , pedagogy , operating system
Humans are able to track multiple objects at any given time in their daily activities—for example, we can drive a car while monitoring obstacles, pedestrians, and other vehicles. Several past studies have examined how humans track targets simultaneously and what underlying behavioral and neural mechanisms they use. At the same time, computer-vision researchers have proposed different algorithms to track multiple targets automatically. These algorithms are useful for video surveillance, team-sport analysis, video analysis, video summarization, and human–computer interaction. Although there are several efficient biologically inspired algorithms in artificial intelligence, the human multiple-target tracking (MTT) ability is rarely imitated in computer-vision algorithms. In this paper, we review MTT studies in neuroscience and biologically inspired MTT methods in computer vision and discuss the ways in which they can be seen as complementary.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom