z-logo
open-access-imgOpen Access
Learning from animals: How to Navigate Complex Terrains
Author(s) -
Henghui Zhu,
Hao Liu,
Armin Ataei,
Yonatan Munk,
Thomas Daniel,
Ioannis Ch. Paschalidis
Publication year - 2020
Publication title -
plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1007452
Subject(s) - obstacle , computer science , terrain , markov decision process , robustness (evolution) , machine learning , artificial intelligence , optical flow , process (computing) , hidden markov model , markov process , ecology , geography , mathematics , statistics , chemistry , archaeology , gene , image (mathematics) , operating system , biology , biochemistry
We develop a method to learn a bio-inspired motion control policy using data collected from hawkmoths navigating in a virtual forest. A Markov Decision Process (MDP) framework is introduced to model the dynamics of moths and sparse logistic regression is used to learn control policy parameters from the data. The results show that moths do not favor detailed obstacle location information in navigation, but rely heavily on optical flow. Using the policy learned from the moth data as a starting point, we propose an actor-critic learning algorithm to refine policy parameters and obtain a policy that can be used by an autonomous aerial vehicle operating in a cluttered environment. Compared with the moths’ policy, the policy we obtain integrates both obstacle location and optical flow. We compare the performance of these two policies in terms of their ability to navigate in artificial forest areas. While the optimized policy can adjust its parameters to outperform the moth’s policy in each different terrain, the moth’s policy exhibits a high level of robustness across terrains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom