z-logo
open-access-imgOpen Access
The object space task shows cumulative memory expression in both mice and rats
Author(s) -
Lisa Genzel,
Evelien H. S. Schut,
Tim Schröder,
Ronny Eichler,
Mehdi Khamassi,
A Rivera Gómez,
Irene NavarroLobato,
Francesco P. Battaglia
Publication year - 2019
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.3000322
Subject(s) - object (grammar) , task (project management) , sample (material) , biology , expression (computer science) , computer science , artificial intelligence , chemistry , management , chromatography , economics , programming language
Declarative memory encompasses representations of specific events as well as knowledge extracted by accumulation over multiple episodes. To investigate how these different sorts of memories are created, we developed a new behavioral task in rodents. The task consists of 3 distinct conditions (stable, overlapping, and random). Rodents are exposed to multiple sample trials, in which they explore objects in specific spatial arrangements, with object identity changing from trial to trial. In the stable condition, the locations are constant during all sample trials even though the objects themselves change; in the test trial, 1 object’s location is changed. In the random condition, object locations are presented in the sample phase without a specific spatial pattern. In the overlapping condition, 1 location is shared (overlapping) between all trials, while the other location changes during sample trials. We show that in the overlapping condition, instead of only remembering the last sample trial, rodents form a cumulative memory of the sample trials. Here, we could show that both mice and rats can accumulate information across multiple trials and express a long-term abstracted memory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom