z-logo
open-access-imgOpen Access
Temporal Structure in Cooperative Interactions: What Does the Timing of Exploitation Tell Us about Its Cost?
Author(s) -
Jessica L. Barker,
Judith L. Bronstein
Publication year - 2016
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.1002371
Subject(s) - biology , coevolution , mutualism (biology) , intraspecific competition , evolutionary biology , ecology , interspecific competition
Exploitation in cooperative interactions both within and between species is widespread. Although it is assumed to be costly to be exploited, mechanisms to control exploitation are surprisingly rare, making the persistence of cooperation a fundamental paradox in evolutionary biology and ecology. Focusing on between-species cooperation (mutualism), we hypothesize that the temporal sequence in which exploitation occurs relative to cooperation affects its net costs and argue that this can help explain when and where control mechanisms are observed in nature. Our principal prediction is that when exploitation occurs late relative to cooperation, there should be little selection to limit its effects (analogous to “tolerated theft” in human cooperative groups). Although we focus on cases in which mutualists and exploiters are different individuals (of the same or different species), our inferences can readily be extended to cases in which individuals exhibit mixed cooperative-exploitative strategies. We demonstrate that temporal structure should be considered alongside spatial structure as an important process affecting the evolution of cooperation. We also provide testable predictions to guide future empirical research on interspecific as well as intraspecific cooperation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom