z-logo
open-access-imgOpen Access
Why Is Aging Conserved and What Can We Do about It?
Author(s) -
Jason N. Pitt,
Matt Kaeberlein
Publication year - 2015
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.1002131
Subject(s) - biology , psychological intervention , evolutionary biology , healthy aging , computational biology , gerontology , psychology , psychiatry , medicine
The field of aging research has progressed rapidly over the past few decades. Genetic modulators of aging rate that are conserved over a broad evolutionary distance have now been identified. Several physiological and environmental interventions have also been shown to influence the rate of aging in organisms ranging from yeast to mammals. Here we briefly review these conserved pathways and interventions and highlight some key unsolved challenges that remain. Although the molecular mechanisms by which these modifiers of aging act are only partially understood, interventions to slow aging are nearing clinical application, and it is likely that we will begin to reap the benefits of aging research prior to solving all of the mysteries that the biology of aging has to offer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom