z-logo
open-access-imgOpen Access
Multivariate Patterns in Object-Selective Cortex Dissociate Perceptual and Physical Shape Similarity
Author(s) -
Johannes Haushofer,
Margaret S. Livingstone,
Nancy Kanwisher
Publication year - 2008
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.0060187
Subject(s) - stimulus (psychology) , perception , pattern recognition (psychology) , similarity (geometry) , biology , artificial intelligence , psychology , communication , cognitive psychology , neuroscience , computer science , image (mathematics)
Prior research has identified the lateral occipital complex (LOC) as a critical cortical region for the representation of object shape in humans. However, little is known about the nature of the representations contained in the LOC and their relationship to the perceptual experience of shape. We used human functional MRI to measure the physical, behavioral, and neural similarity between pairs of novel shapes to ask whether the representations of shape contained in subregions of the LOC more closely reflect the physical stimuli themselves, or the perceptual experience of those stimuli. Perceptual similarity measures for each pair of shapes were obtained from a psychophysical same-different task; physical similarity measures were based on stimulus parameters; and neural similarity measures were obtained from multivoxel pattern analysis methods applied to anterior LOC (pFs) and posterior LOC (LO). We found that the pattern of pairwise shape similarities in LO most closely matched physical shape similarities, whereas shape similarities in pFs most closely matched perceptual shape similarities. Further, shape representations were similar across participants in LO but highly variable across participants in pFs. Together, these findings indicate that activation patterns in subregions of object-selective cortex encode objects according to a hierarchy, with stimulus-based representations in posterior regions and subjective and observer-specific representations in anterior regions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom