z-logo
open-access-imgOpen Access
Amyloid as a Depot for the Formulation of Long-Acting Drugs
Author(s) -
Samir K. Maji,
David Schubert,
Catherine Rivier,
Soon Lee,
Jean Rivier,
Roland Riek
Publication year - 2008
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.0060017
Subject(s) - amyloid (mycology) , peptide , biology , drug , protein aggregation , biochemistry , biological activity , biophysics , computational biology , pharmacology , in vitro , botany
Amyloids are highly organized protein aggregates that are associated with both neurodegenerative diseases such as Alzheimer disease and benign functions like skin pigmentation. Amyloids self-polymerize in a nucleation-dependent manner by recruiting their soluble protein/peptide counterpart and are stable against harsh physical, chemical, and biochemical conditions. These extraordinary properties make amyloids attractive for applications in nanotechnology. Here, we suggest the use of amyloids in the formulation of long-acting drugs. It is our rationale that amyloids have the properties required of a long-acting drug because they are stable depots that guarantee a controlled release of the active peptide drug from the amyloid termini. This concept is tested with a family of short- and long-acting analogs of gonadotropin-releasing hormone (GnRH), and it is shown that amyloids thereof can act as a source for the sustained release of biologically active peptides.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom