Precise Positioning of Myosin VI on Endocytic Vesicles In Vivo
Author(s) -
David Altman,
Debanjan Goswami,
Tama Hasson,
James A. Spudich,
Satyajit Mayor
Publication year - 2007
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.0050210
Subject(s) - myosin , endocytic cycle , vesicle , biology , förster resonance energy transfer , myosin head , biophysics , microbiology and biotechnology , clathrin , actin , biochemistry , fluorescence , myosin light chain kinase , endocytosis , membrane , physics , quantum mechanics , cell
Myosin VI has been studied in both a monomeric and a dimeric form in vitro. Because the functional characteristics of the motor are dramatically different for these two forms, it is important to understand whether myosin VI heavy chains are brought together on endocytic vesicles. We have used fluorescence anisotropy measurements to detect fluorescence resonance energy transfer between identical fluorophores (homoFRET) resulting from myosin VI heavy chains being brought into close proximity. We observed that, when associated with clathrin-mediated endocytic vesicles, myosin VI heavy chains are precisely positioned to bring their tail domains in close proximity. Our data show that on endocytic vesicles, myosin VI heavy chains are brought together in an orientation that previous in vitro studies have shown causes dimerization of the motor. Our results are therefore consistent with vesicle-associated myosin VI existing as a processive dimer, capable of its known trafficking function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom