z-logo
open-access-imgOpen Access
Algorithmic Self-Assembly of DNA Sierpinski Triangles
Author(s) -
Paul W. K. Rothemund,
Nick Papadakis,
Erik Winfree
Publication year - 2004
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.0020424
Subject(s) - sierpinski triangle , cellular automaton , computation , crossover , fractal , realization (probability) , dna , dna computing , algorithm , computer science , biology , theoretical computer science , biological system , mathematics , genetics , artificial intelligence , mathematical analysis , statistics
Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern—a Sierpinski triangle—as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100–200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom