z-logo
open-access-imgOpen Access
Full-color autostereoscopic 3D display system using color-dispersion-compensated synthetic phase holograms
Author(s) -
Kyongsik Choi,
Hwi Kim,
Byoungho Lee
Publication year - 2004
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/opex.12.005229
Subject(s) - holography , optics , autostereoscopy , spatial light modulator , phase (matter) , materials science , holographic display , dispersion (optics) , computer science , physics , stereoscopy , quantum mechanics
A novel full-color autostereoscopic three-dimensional (3D) display system has been developed using color-dispersion-compensated (CDC) synthetic phase holograms (SPHs) on a phase-type spatial light modulator. To design the CDC phase holograms, we used a modified iterative Fourier transform algorithm with scaling constants and phase quantization level constraints. We obtained a high diffraction efficiency (~90.04%), a large signal-to-noise ratio (~9.57dB), and a low reconstruction error (~0.0011) from our simulation results. Each optimized phase hologram was synthesized with each CDC directional hologram for red, green, and blue wavelengths for full-color autostereoscopic 3D display. The CDC SPHs were composed and modulated by only one phase-type spatial light modulator. We have demonstrated experimentally that the designed CDC SPHs are able to generate full-color autostereoscopic 3D images and video frames very well, without any use of glasses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom