Watt-level europium laser at 703 nm
Author(s) -
Pavel Loiko,
Daniel Rytz,
Sebastian Schwung,
Patrick Pues,
Thomas Jüstel,
JeanLouis Doualan,
Patrice Camy
Publication year - 2021
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.428706
Subject(s) - watt , optics , europium , laser , materials science , laser beams , optoelectronics , physics , power (physics) , quantum mechanics , luminescence
We report on a watt-level highly efficient europium laser operating at the ${^5{\rm D}_0 \to {^7}{\rm F}_4}$ transition. It is based on the stoichiometric ${\rm KEu}{({\rm WO}_4)_2}$ crystal. Under pumping by a green laser at 532.1 nm, the ${\rm KEu}{({\rm WO}_4)_2}$ laser generated a maximum peak output power of 1.11 W at ${\sim}{703}\;{\rm nm}$ with a slope efficiency of 43.2% and a linear polarization ($E\|\;{N_m}$). A laser threshold as low as 64 mW was achieved. True continuous-wave operation was demonstrated. The polarized emission properties of monoclinic ${\rm KEu}{({\rm WO}_4)_2}$ were determined.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom