Phase-shifted laser feedback interferometry
Author(s) -
Ben Ovryn,
James H. Andrews
Publication year - 1998
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.23.001078
Subject(s) - optics , interferometry , laser , interference (communication) , phase (matter) , phase modulation , visibility , physics , optical path length , distributed feedback laser , modulation (music) , optical path , materials science , phase noise , computer science , telecommunications , channel (broadcasting) , quantum mechanics , acoustics
We have introduced the techniques of phase-shifting interferometry into a laser feedback interference microscope based on a helium-neon laser. With moderate feedback, multiple reflections between the sample and the laser are shown to be negligible, and the interferometer responds sinusoidally with a well-characterized fringe modulation. One can obtain higher signal-to-noise ratios by determining the number of additional terms required for modeling the effect of multiple reflections on the phase and visibility measurements in the high-feedback regime. Changes in optical path length are determined with nanometer precision without phase averaging or lock-in detection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom