High energy (0.8 J) mechanically Q-switched 2.94 μm Er:YAG laser
Author(s) -
Krishna Karki,
Vladimir Fedorov,
Dmitry Martyshkin,
Sergey Mirov
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.417301
Subject(s) - optics , materials science , laser , output coupler , q switching , er:yag laser , pulse duration , jitter , pulse width modulation , pulse (music) , fiber laser , power (physics) , physics , telecommunications , quantum mechanics , detector , computer science
We report a flashlamp pumped mechanically Q-switched (MQS) 2.94 μm Er:YAG laser based on a spinning mirror with a highest output energy of 805 mJ at a pulse duration of 61 ns and 13 MW of peak power at 1 Hz repetition rate. This record output energy was achieved with the use of 300 mm long MQS Er:YAG laser cavity consisting of a 70% output coupler, 7 × 120 mm AR coated Er(50%):YAG crystal, and 4200 rad/s angular speed of the spinning mirror. The pulse jitter was also measured by using optical triggering and was smaller than 10 ns for 150 ns Q-switched pulses, which could be applicable to many laser applications where precise synchronization of pulses is required.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom