Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction
Author(s) -
Abeer Alarawi,
Vinoth Ramalingam,
HuiChun Fu,
Purushothaman Varadhan,
Rusen Yang,
JrHau He
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.00a352
Subject(s) - materials science , optics , optoelectronics , hydrogen production , heterojunction , hydrogen , physics , quantum mechanics
Photoelectrochemical water splitting is one of the viable approaches to produce clean hydrogen energy from water. Herein, we report MoS 2 /Si-heterojunction (HJ) photocathode for PEC H 2 production. The MoS 2 /Si-HJ photocathode exhibits exceptional PEC H 2 production performance with a maximum photocurrent density of 36.33 mA/cm 2 , open circuit potential of 0.5 V vs. RHE and achieves improved long-term stability up to 10 h of reaction time. The photocurrent density achieved by MoS 2 /Si-HJ photocathode is significantly higher than most of the MoS 2 coupled Si-based photocathodes reported elsewhere, indicating excellent PEC H 2 production performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom