z-logo
open-access-imgOpen Access
Defining cylindrical space optical resonators through supported mode properties: inverse numerical process
Author(s) -
Robert C. Gauthier
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.010091
Subject(s) - resonator , optics , physics , bessel function , faraday effect , permittivity , relative permittivity , magnetic field , dielectric , quantum mechanics
Faraday's and Ampere's laws are converted to matrix operator form and rearranged such that the unknown relative permittivity and relative permeability tensors can be determined. The material and geometry of cylindrically symmetric optical resonator structures are determined through the electric and magnetic field component profiles and complex angular frequency of a proposed localized state. This differs from the usual utilization of the electromagnetic wave equations, solving for states given the material properties and geometry. Thus the technique presented here is an inverse numerical process. The theoretical expressions are provided based on a Fourier-Bessel numerical approach which is highly suitable for cylindrical geometry resonators. Without loss of the generality of the technique, examples of resonant structure determination are presented for non-magnetic and diagonal relative permittivity tensor. Axial field propagation is included to demonstrate the design capabilities related to optical fiber and photonic crystal fiber structures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom