A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel
Author(s) -
Kao Der Chang,
Chang Yi Li,
JuiWen Pan,
Kuei Yuan Cheng
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.00a567
Subject(s) - oled , optics , materials science , brightness , optoelectronics , collimated light , diode , diffuser (optics) , laser , physics , light source , layer (electronics) , composite material
Organic light emitting diodes (OLEDs) with a quasi-crystal (QC) structure are analyzed and applied in a head-mounted display (HMD) system in this study. We adopt a hybrid simulated method to evaluate the light extraction efficiency (LEE) and far-field pattern in the air, and study the relationship between them. The simulation results show that OLEDs implanted with the QC structure can provide a collimated far-field pattern to increase the brightness. Using this 10-fold QC arrangement the maxima LEE of the OLEDs can be increased by 1.20 times. Compared with conventional OLEDs, the viewing angle of the OLED panel decreases from 120 degrees to 26 degrees with an improvement in the optical efficiency of the HMD system by 2.66 times. Moreover, the normalized on-axis intensity in the pupil of the eyepiece can be enlarged up to 3.95 times which suggests that the OLED panel can save 74.68% energy while achieving the same on-axis intensity as conventional OLEDs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom