z-logo
open-access-imgOpen Access
The Parabolic Transform and Some Singular Integral Evolution Equations
Author(s) -
Mahmoud M. El-Borai,
Khairia El-Said El-Nadi
Publication year - 2020
Publication title -
mathematics and statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.149
H-Index - 3
eISSN - 2332-2144
pISSN - 2332-2071
DOI - 10.13189/ms.2020.080406
Subject(s) - mathematics , singular integral , mathematical analysis , integral transform , singular integral operators , singular solution , parabolic partial differential equation , integral equation , partial differential equation
Some singular integral evolution equations with wide class of closed operators are studied in Banach space. The considered integral equations are investigated without the existence of the resolvent of the closed operators. Also, some non-linear singular evolution equations are studied. An abstract parabolic transform is constructed to study the solutions of the considered ill-posed problems. Applications to fractional evolution equations and Hilfer fractional evolution equations are given. All the results can be applied to general singular integro-differential equations. The Fourier Transform plays an important role in constructing solutions of the Cauchy problems for parabolic and hyperbolic partial differential equations. This means that the Fourier transform is suitable but under conditions on the characteristic forms of the partial differential operators. Also, the Laplace transform plays an important role in studying the Cauchy problem for abstract differential equations in Banach space. But in this case, we need the existence of the resolvent of the considered abstract operators. This note is devoted to exploring the Cauchy problem for general singular integro-partial differential equations without conditions on the characteristic forms and also to study general singular integral evolution equations. Our approach is based on applying the new parabolic transform. This transform generalizes the methods developed within the regularization theory of ill-posed problems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom