z-logo
open-access-imgOpen Access
On (2; 2)-regular Non-associative Ordered Semigroups via Its Semilattices and Generated (Generalized Fuzzy) Ideals
Author(s) -
Yousef Al-Qudah,
Faisal Yousafzai,
Mohammed M. Khalaf,
Mohammad Almousa
Publication year - 2020
Publication title -
mathematics and statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.149
H-Index - 3
eISSN - 2332-2144
pISSN - 2332-2071
DOI - 10.13189/ms.2020.080315
Subject(s) - mathematics , associative property , fuzzy logic , pure mathematics , algebra over a field , discrete mathematics , artificial intelligence , computer science
The main motivation behind this paper is to study some structural properties of a non-associative structure as it hasn't attracted much attention compared to associative structures. In this paper, we introduce the concept of an ordered A*G**-groupoid and provide that this class is more generalized than an ordered AG-groupoid with left identity. We also define the generated left (right) ideals in an ordered A*G**-groupoid and characterize a (2; 2)-regular ordered A*G**-groupoid in terms of these ideals. We then study the structural properties of an ordered A*G**-groupoid in terms of its semilattices, (2; 2)-regular class and generated commutative monoids. Subsequently, compare -fuzzy left/right ideals of an ordered AG-groupoid and respective examples are provided. Relations between an -fuzzy idempotent subsets of an ordered A*G**-groupoid and its -fuzzybi-ideals are discussed. As an application of our results, we get characterizations of (2; 2)-regular ordered A*G**-groupoid in terms of semilattices and -fuzzy left (right) ideals. These concepts will help in verifying the existing characterizations and will help in achieving new and generalized results in future works.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom