z-logo
open-access-imgOpen Access
Characterizations of Some Special Curves in Lorentz-Minkowski Space
Author(s) -
M. Khalifa Saad,
Rashad A. Abdel-Baky,
F. Alharbi,
A. Aloufi
Publication year - 2020
Publication title -
mathematics and statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.149
H-Index - 3
eISSN - 2332-2144
pISSN - 2332-2071
DOI - 10.13189/ms.2020.080308
Subject(s) - mathematics , minkowski space , lorentz transformation , lorentz space , space (punctuation) , mathematical analysis , pure mathematics , mathematical physics , classical mechanics , physics , linguistics , philosophy
In a theory of space curves, especially, a helix is the most elementary and interesting topic. A helix, moreover, pays attention to natural scientists as well as mathematicians because of its various applications, for example, DNA, carbon nanotube, screws, springs and so on. Also there are many applications of helix curve or helical structures in Science such as fractal geometry, in the fields of computer aided design and computer graphics. Helices can be used for the tool path description, the simulation of kinematic motion or the design of highways, etc. The problem of the determination of parametric representation of the position vector of an arbitrary space curve according to the intrinsic equations is still open in the Euclidean space E3 and in the Minkowski space . In this paper, we introduce some characterizations of a non-null slant helix which has a spacelike or timelike axis in . We use vector differential equations established by means of Frenet equations in Minkowski space . Also, we investigate some differential geometric properties of these curves according to these vector differential equations. Besides, we illustrate some examples to confirm our findings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom