Matrix rings over a principal ideal domain in which elements are nil-clean
Author(s) -
Somayeh Hadjirezaei,
Somayeh Karimzadeh
Publication year - 2016
Publication title -
journal of algebra combinatorics discrete structures and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.137
H-Index - 1
ISSN - 2148-838X
DOI - 10.13069/jacodesmath.82415
Subject(s) - ideal (ethics) , matrix (chemical analysis) , principal (computer security) , domain (mathematical analysis) , mathematics , principal ideal , pure mathematics , algebra over a field , computer science , mathematical analysis , combinatorics , chemistry , political science , law , computer security , prime (order theory) , chromatography
An element of a ring $R$ is called nil-clean if it is the sum of an idempotent and a nilpotent element. A ring is called nil-clean if each of its elements is nil-clean. S. Breaz et al. in [1] proved their main result that the matrix ring $\mathbb{M}_{ n}(F)$ over a field $F$ is nil-clean if and only if $F\cong \mathbb{F}_2$, where $\mathbb{F}_2$ is the field of two elements. M. T. Ko\c{s}an et al. generalized this result to a division ring. In this paper, we show that the $n\times n$ matrix ring over a principal ideal domain $R$ is a nil-clean ring if and only if $R$ is isomorphic to $\mathbb{F}_2$. Also, we show that the same result is true for the $2\times 2$ matrix ring over an integral domain $R$. As a consequence, we show that for a commutative ring $R$, if $\mathbb{M}_{ 2}(R)$ is a nil-clean ring, then dim$R=0$ and char${R}/{J(R)}=2$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom