z-logo
open-access-imgOpen Access
Graphical properties of the bipartite graph of Spec(Z[x])\{0}
Author(s) -
Christina Eubanks-Turner,
Aihua Li
Publication year - 2015
Publication title -
journal of algebra combinatorics discrete structures and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.137
H-Index - 1
ISSN - 2148-838X
DOI - 10.13069/jacodesmath.66836
Subject(s) - spec# , bipartite graph , graph , mathematics , combinatorics , computer science , programming language
Consider $Spec(Z[x])$, the set of prime ideals of $Z[x]$ as a partially ordered set under inclusion. By removing the zero ideal, we denote $G_{Z}=Spec(Z[x])\{0}$ and view it as an infinite bipartite graph with the prime ideals as the vertices and the inclusion relations as the edges. In this paper, we investigate fundamental graph theoretic properties of $G_{Z}$. In particular, we describe the diameter, circumference, girth, radius, eccentricity, vertex and edge connectivity, and cliques of $G_{Z}$. The complement of $G_{Z}$ is investigated as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom