z-logo
open-access-imgOpen Access
Every 5-connected planar triangulation is 4-ordered Hamiltonian
Author(s) -
Kenta Ozeki
Publication year - 2015
Publication title -
journal of algebra combinatorics discrete structures and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.137
H-Index - 1
ISSN - 2148-838X
DOI - 10.13069/jacodesmath.42463
Subject(s) - planar , triangulation , hamiltonian (control theory) , computer science , combinatorics , mathematics , geometry , computer graphics (images) , mathematical optimization
A graph $G$ is said to be \textit{$4$-ordered} if for any ordered set of four distinct vertices of $G$, there exists a cycle in $G$ that contains all of the four vertices in the designated order. Furthermore, if we can find such a cycle as a Hamiltonian cycle, $G$ is said to be \textit{$4$-ordered Hamiltonian}. It was shown that every $4$-connected planar triangulation is (i) Hamiltonian (by Whitney) and (ii) $4$-ordered (by Goddard). Therefore, it is natural to ask whether every $4$-connected planar triangulation is $4$-ordered Hamiltonian. In this paper, we give a partial solution to the problem, by showing that every $5$-connected planar triangulation is $4$-ordered Hamiltonian.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom